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Redundant manipulators greatly enhance the performance of robotic systems over

standard non-redundant manipulators. T hoir larger joint space is capable of meeting

user defined task constraints in addition 1o the standard Cartesian task constraints.

However, the key to the efficient performallce of these manipulators is in the method

of utilizing their increased joint space or the redundancy resolution approach. The

redundancy resolution approach taken tot' the CIRSSE (9 dof) arm involves the de-

velopment of two inverse functions, the ?,Lma-Positioner and the Puma-Platform.

The Puma-Positioner defines a secondary task vector as the position of the base of

the PUMA which is then used to expand the workspace of the PUMA. In addition,

a joint limit avoidance scheme is generated around the Puma-Positioner that defines

internally the secondary task vector and generates a joint vector whose components

are within their joint limits. The Puma--Platform defines the secondary task vector

as the internal position of the links whi_h is then used to accurately position and

orient the end-effector and the manipulator's links. Finally, an obstacle avoidance

algorithm is created around the Puma-Platform that defines its secondary task vec-

tor based on obstacles entering the manil_ulator's workspace. This secondary task

vector is then used to generate link motion that occurs in the null-space of the

end-effector while avoiding the obstacles.
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CHAPTER 1

INTRODUCTION

i

i

i

I

=

w

Redundant manipulators have become a,n integral part of most robotic systems.

They increase the fnnctionality of the robotic system by offering extra degrees of

freedom and the ability to cope with unexpected disturbances. A manipulator is

characterized by the number of its joints which also determine the degree of freedom

(dof) of the manipulator's joini space, l'ot" a non-redundant manipulator, the dof

of the manipulator's joint space is equal to the dof its task space. The dof of the

task space is determined by the minimlml number of variables that are required

to describe any position and orientation il, that task space. However, a redundant

manipulator has a greater dof in its joint space than its task space. This inequality

causes the mapping between the joint space and the task space to be non-unique

for the forward mapping and non-existent for the inverse mapping.

Redundant manipulators have been recognized as being superior to standard

manipulators due to their increased joinl space. The fact that there are now more

joints than are needed to meet the conslraints of the task space allows for the

development of additional constraints. "['lLese constraints can be used to increase

manipulability, minimize joint torques arid as covered in this thesis, avoid joint

limits and obstacles. The task and user defined constraints can be formulated into

an optimization problem. This optimization or redundancy resolution problem is

solved in this thesis through the develol)ment of an inverse function. An inverse

function generates a one-to-one and cyclic mapping between the task space and the

joint space of a redundant manipulator. A cyclic mapping is defined as a mapping

in which a closed path ahvays maps into atlother closed path. The inverse functions

augment the task space with a redundanI task space; thus adding the necessary

extra degrees of freedom to the task spac,_. The redundant task space is spanned by
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Figure 1.l: Model of CIRSSE Robotic facilities

configuration varlables. The detiEdtioll of tl_ese configuration variables differentiates

one inverse function from anoth_'r. Two il,verse functions, the Puma-Positioner and

the Puma-Platform. are imph-_T_'nted iT_ vhis thesis. The redundant task space of

the Puma-Positiouer is dc'scr'ib,.,1 by the. t l_vee platform joints, ql, q2 and q3. These

joints, which det<+rmilw the, I>o._iliou of th,. I'UMA's base, are user specified and thus

allow the PUMA Io 1>,,traHslat,',l to a tl<'w I,_cation. The redundant task spaceof the

Puma-Platform is descvil,_.d by throe _j,_,lially visualizable configuration variables,

dl, he and thet_, ih_._e variables descril,,, the location of the links and thus allow

the user to accurately specify t l_e deslr_'d I,,cat.ion of the manipulator's end-effector

and its links.

The fo|'mulat iolt o["t]l_' P|lll|a-Positi._ter and Puma-Platform inverse functions

lend themselves ,o tho applicatiot,o of i,,int-limit avoidance and obstacle avoid-

ance, respectively. The Punla.-Positiotler i.- incorporated into a joint-limit avoidance

scheme by utilizi_tg ]t._ thr_'e co1_figuratiof_ variables in such a manner as to meet the

position and orieutatioa constraints of t.lw end-effector while avoiding joint limits.

The Pt|ma--Platfo|'m's t.hre_' sp_lia.lly vi.-_lalizabie configuration variables are used
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in an obstacle avoidance scheme to reconfigure the the internal configuration of the

links in such a manner as to avoid any obstacles without affecting the end-effector's

motion.
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1.1 Motivation

The CIRSSE facilities currently consist of two PUMA manipulators of the 560

and 600 series each mounted on a three dof platform, as described in figure 1.1.

Since each pair of mampulators can be grouped into a single nine dof manipulator,

they are considered to be redundant maniwdators. Redundant manipulators require

special techniques to produce adequate ln,tppings between the joint space and the

task space. These techniques should nol only meet the position and orientation

constraints of the end-effector, but shoul_l _tlso utilize the extra joints in an efficient

manner. The inverse function approach allows for the efficient usage of the extra

joints. Constraints can be easily implemented to meet any user defined needs.

The Puma-Positioner and Puma-Plat form inverse functions were developed in

order to meet the needs of the lab. A great deal of work is done exclusively on the

PUMA. An inverse function was needed tllat would allow one to not only perform

tasks on the PUMA, but also be able to use the platform to reposition the PUMA

and thus expand its workspace. This was accomplished through the development

of the Puma-Positioner. Also, even with a redundant manipulator, the problem of

joint limits still exist. A joint-limit avoidance scheme was needed that would be

able to meet Cartesian task constraints a_ld also avoid joint limits. This scheme

was developed with the aid of the Puma-Positioner inverse function. The PUMA

atop the platform can viewed as a nine dof manipulator. It would be beneficial

to have a mappiug that would allow the user , as is the case in non-redundant

manipulators, to be able to visually identify the configuration of the manipulator.

This woukt require that the redundant task space be parameterized by visualizable

u
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configuration variables. All this was acconlplished through the development of the

Puma-Platform. Finally, since the two CIRSSE manipulators would be cooperating

on tasks and working among obstacles, an obstacle avoidance scheme was needed.

This scheme should be fast and should generate internal link motion without affect-

ing the end-effector's motion. Such a scheme was developed through the use of the

Puma-Platform.

1.2 Objectives

Motivated l).v tile structure of the C'IRSSE facilities, four objectives were de-

termined and met. These objectives are as follows:

• To develop a Puma-Positioner invers,' function that would use the platform to

greatly expand tile workspace of the PUMA.

• To develop a joint-limit avoidance scheme based on the Puma-Positioner that

would allow the user access to the expanded workspace of the PUMA without

the hassle of hitting joint [imits.

• To develop a Puma-Platform inverse' function that would model the PUMA

and the platform as a single nine (lot" manipulator and be able to accurately

describe the position and orientation of the end-effector and the internal con-

figuration of the links.

• To develop an obstacle avoidance scheme base on the Puma-Platform that

would utilize the different internal con figurations of the links to avoid obstacles.

1.3 Summary

The CIRSSE facilities consist of two ,fine dof manipulators. Two inverse func-

tions were developed for these redundau_ ,nanipulators that would provide one-to-

one and cyclic mappings between the joint _pace and task space of the manipulator.
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These inverse functions, the Puma-Positioner and the Puma-Platform, were then

respectively developed into joint limit and obstacle avoidance schemes. In the fol-

lowing chapters, a detailed description of the inverse functions and the joint limit

and obstacle avoidance schemes will be presented. In chapter two, a literature re-

view of all the material pertaining to this thesis is given. Chapter three deals with

the forward kinematics of the redundant manipulator. Chapter four covers the in-

verse kinematics. The effect of" the invet'se functions on manipulator singularities

is covered in chapter five. Chapters six and seven deal with the implementation

of the inverse flmctioas in a joint limit _voidance and obstacle avoidance scheme,

respectively. Chapter eight provides the testing and simulation results and chapter

nine offers a conclusion.
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CHAPTER 2:

LITERATURE REVIEW

The redundancy resolution problem for redundant manipulators is an optimization

problem that deals with the determination of a joint vector that meets both Carte-

sian and user defined task constraints. ,4 great deal of research effort has been de-

voted to redundancy resolution and has resulted in the generation of many different

approaches to this problem. These approaches can be divided into two major classes,
......... T : _ ........ :; 7 :;

-global and local optimization schemes. Tile global approaches, as used by Naka-

mura[1] and Hollerbach[2], generally assun_e that total knowledge of the tasks and

the workspace is available. They are usually iterative and computationally intense.

These types of approaches lend themselves more to off-line applications than on-

line ones. On-line applications generally utilize local optimization schemes. These

schemes can be subdivided into Jacobian based and non-Jacobian based schemes.

The Jacobian based schemes translate task and user defined constraints into joint ve-

locities. These joint velocities are then integrated to provide the joint paths. These

schemes tend to be computationally intense since they usually require the compu-

tation of the generalized inverse of the .lacobian. These schemes also tend to suffer

from drifting. Drifting is defined as the case where for a fixed set of constraints, the

corresponding joint vector that's produced varies over multiple runs. This is of great

importance in a s._embly lines where accurate repetition of tasks is of vital interest.

The different Jacobian based methods vary only in the computation of the joint

velocity vector. Witney[5] utilized the Xh,ore-Penrose Jacobian pseudo-inverse to

produce joint velocities. Tliis generalized inverse optimized the square of the joint

velocities. Sukhan Lee and Jang Lee[8] decomposed a redundant manipulator into

multiple non-redundant manipulators. Th,' generalized inverse of the Jacobian was

J
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used to translate the task constraints into joint velocities for the multiple manipula-

tors. Zghal and Dubey[6,7] introduced an _,fficlent gradient projection optimization

scheme for redundant manipulators. By extracting a non-singular matrix from the

Jacobian matrix, they were able to avoid ,'alculating the generalized inverse of the

Jacobian. Sciavicco and Sicilano[9, 10] inr, roduced the augmented Jacobian method.

They augmented the manipulator's Jacol_bm with enough constraints to generate a

square Jacobian matrix. The transpose of the augmented Jacobian was placed in a

feedback loop and used to map a Ce_rtesian space error into a joint velocity. This

method escaped having to use the genera tized inverse of the Jacobian but suffered

from convergence problems near singular points.

The non-Jacobian based methods rel_r mostly to inverse functions. Seraji[ll]

dealt with some control aspects of invet'._e functions. Wampler[12] and Shamir[14]

provided a comparison between inverse functions and other redundancy resolution

approaches. Hollerbach[13] developed an inverse function for a seven dof manipu-

lator. These four authors are the source ol" most of the material concerning inverse

functions that's presented in this thesis, hlverse functions produce one-to-one and

cyclic mappings between the joiut space ,_11dthe augmented task space of a manipu-

lator. They tend to be computationally e_,:ient since they don't require the calcula-

tion of the Jacobian or its inverse. Inver._' t'unctions map tasks directly into the joint

space without having to calculate joint velocities and integrating them. Inverse func-

tions also give one some control over singtdarities as discussed by Bedrossian[15].

The effect of inverse functions on the singularities of the CIRSSE manipulator is

presented in chapter five. One possible drawback of the inverse function approach

is that it is not a generic process. The mat_ipulator's Jacobian can always be deter-

mined and thus .lacobian based schemes apply for all manipulators. However, the

inverse function defined for one manipulalor will not necessarily work on another.

This weakness can also be viewed as a strength. If an inverse function is found
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for a manipulator, then this inversefunction will be basedsolely on that manipu-

lator's characteristics. This meansthat tile inversefunction will be both fast and

efficient. The inversefunctions, the Puma-Positionerand the Puma-Platform, pre-

sentedin this thesisexhibit thesecharacteristics. These inversefunctions will now

be discussedin somedetail.
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CHAPTER 3

FORWARD KINEMATICS

u

The forward kinematics describes the mapping from the joint space of a manipulator

to its task space. The joint space consists of all possible joint configurations that

the manipulator can assume. The task space contains all the possible position and

orientations that the manipulator's end-efl'ector can take. This forward kinematic

mapping assumes the form of

h

L_

h

u

Li

m

x = f(q) (3.1)

where q is a (n x 1) joint vector, x a (m x 1) task vector and f is a non-linear

function. In addition to the above mappillg, the forward kinematics also includes

mappings fi'om the joint space into a sel of discrete variables. These variables

are termed pose variables and describe the, discrete set of joint configurations that

correspond to each task vector. For not_-redundant manipulators, the mapping

from the joint space to the task space and the discrete variables is one-to-one. This

fact indicates that the size or degree of [r,_edom (dog) of the joint space, which is

determined by the number of manipulator joints, is equal to the dog of the task space.

The task space has six dogs for a spatial nlanipulator where three of those degrees

are for positioning and three are for oriet_tlng the end-effector. For a redundant

manipulator, the joint space is larger tha_l the task space. This means that the

forward kinematic mapping is not unique. Also, in addition to the discrete set

of joint solutions that correspond to each task vector, there also exists an infinite

number of joint solutions for each task v(,ctor. There now exists a great deal of

flexibility in choosing the joint configurati(,ns for a desired task space vector. How

one makes this choice is the cen_ ral theme, of redundancy resolution and is addressed

9

w



in the development of the inverse functions in this thesis.

The inverse function resolves the redundancy resolution problem by generating

a one-to-one forward kinematic mapping. It accomplishes this by augmenting the

manipulator's task space with a redundan), task space. This redundant task space

provides the necessary extra dofs to the task space so that each joint in the joint

space vector is independently represented in the augmented task space vector. The

augmented forward kinematic mapping takes the form of:

z = j(q)

•vr = g(q) (3.2)

where .v_ is the (r=n-m) t'edundant task vector and g maps q into zr. The

redundant task space is spanned by r variables termed configuration variables or

kinematic functions. These functions can be chosen arbitrarily with the only condi-

tion being that they are independent of each other and the position and orientation

of the end-effector. Their independenc e !s verified by calculating the augmented

Jacobian. The standard manipulator Jacobian maps the joint velocities into the

task velocities. The attgmented Jacobian _naps the joint space velocities into both

the task space and redundant task space velocities. It takes the form of:

g

m

m

I

m
m

m

m

l

g

m

m

.I_(q) • q (3.3)

j,
dg/dq

where J, is the (m x n) manipulator .Iacobian, dg/dq the is the (r x n) matrix

representing the gradient of the" (r x 1) vector, g and J,, is the (n x n) augmented

Jacobian. The independence of the kinematic functions, g, is determined by eval-

uating the rank of the a.ugrnet_ted Jacobian. If the augmented Jacobian is rank
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Model of CIRSSE (9 dof) manipulator

deficient then the. kinetnatic fulwtions _,rc not independent and new ones must be

selected.

The ("[RS.";I': manip,llator consists ola six dof PUMA atop a three dof plat-

form. Figure 3.1 i)rovi&,. ,, a nt_del of Illi- arm where Ps represents the shoulder

position. P¢I th,. primary elbow positiol,. Pc2 the secondary elbow position and

Pw the wrist po_,ilioll. The il|\erse ['|tlu tiO|lS that are developed in this thesis all

correspond To the tnodel in tigure 3. L. lhis CIRSSE manipulator is a nine dof

spatial arm that operates in a six dof ta>k space. This fact indicates that there

are three ex_.ra ch,fs in th,, .ioit_1 space. TI,e inverse functions for this manipulator

are thus required to have a thr,'e dof r_.d,ltldant task space in order to account for

the extra joims. Fh,, two inw'rse fumli,,us that were developed are termed the

Puma-Posirioner and the Pum,,-Platforl,t. The Puma-Positioner has a redundant

task space that i.,, spauned by three col_lq_,tration variables These variables are the

first three platform .ioiuT value_, and ar_. I,'rmed ql,q2 and q3. The Puma-Platform

u
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has three kinematic functions in its redundant task space. These functions are

termed dl, he and theta. A detailed description of these inverse functions and their

redundant task space will be given in the, t'ollowing sections.

The inverse functions not only defitw the redundant task space, but also the

pose space. Although the redundant task space provides the necessary extra dofs,

there still exists a discrete set or'link configurations that the manipulator can be in

for each desired augmented task vector. Tltese link configurations are termed poses

and comprise the pose space which is spa,ned by a set of discrete pose variables.

The pose variables for the Puma-Positioner are three in number. They are termed

right_left, wrist and wst_to_e2. There are five pose variables in the Puma-Platform

and are termed right_left, wrist, wst_to_(2, e2_to_e 1 and elbow. A complete descrip-

tion of the redundant task space and pose space for each inverse function will now

be given.
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3.1 Redundant Task Space

The redundant task space can be considered to be the space consisting of

all secondary task vectors. The primary task of any manipulator is to position

and orient its end-effector. However, for a redundant manipulator, a secondary

task needs to be defined in order to account for the extra joints. These secondary

task vectors that comprise the redundant task space are a function of the inverse

function being used by the redundant manipulator. The Puma-Positioner inverse

function was designed with the purpose ot expanding the PUMA's workspace. Its

redundant task space is spanned by the three platform joints. The secondary task

for this inverse function is to position the PUMA's base at the position specified

by the user. The Puma-Platform inverse ['unction was designed with the purpose

of modeling the PUMA and platform m_ , nine joint manipulator. Its redundant

task Space is spanned by three spatially vi._ualizable configuration variables, dl, he
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and theta. These variables serve to describe the internal position of the links. The

secondary task for this inverse function is to position the internal links at a position

designated by the user. The redundant task space of the Puma-Positioner obviously

differs from that of the Puma-Platform. However, there are several characteristics

of the redundant task space that are invariant for these inverse functions and for

any other inverse function that's developed for the CIRSSE manipulator. The first

characteristic is the dimensionality of this space. Since the CIRSSE manipulator has

three redundant dofs, the dimension of the redundant task space is three. This fact

ensures that all redundant joints will be t'epresented in the redundant task space.

The second characteristic is independence. All redundant task spaces are spanned

by a basis vectoL' that's indepetldent of the task space vector. This independence

ensures that each joint is represented either by the task space or redundant task

space vector. Finally. the last characterislic is the existence of a null-space. The

null-space of a redundant manipulator is defined as the set of all joint motions for

which there is no change in the position and orientation of the end-effector. The

basis vectors that span the redundant task space serve to describe the null-space.

A detailed description of the configuration variables that define the redundant task

space for the Puma-Positioner and Puma-l>latform will now be given.

3.1.1 Puma-Positioner Configuration variables

The configuration variables in the Pt,ma-Positioner are the three joints of the

platform, q_. q2 atld q3. They serve only to indicate the position and orientation of

the platform which in turn indicates the' position and orientation of the PUMA's

base. The secondary task being perform_'d hy these kinematic functions is to monitor

the location of the PUMA's base. Since the inverse function is used to expand the

PUMA's workspace, this definition of the kinematic functions is suitable to this

task. Since the kinematic functions exacr_ly match the first three joint angles, they

m
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are identity functions. This means that the rank of the augmented Jacobian is

equal to that of the manipulator's Jacobian, J_. This result is documented in the

appendix. Since, by definition, the manipulator's Jacobian is always of full rank

except at singular points, these three configuration variables are independent and

thus, valid choices.

3.1.2 Puma-Platform Configuration variables

The redundant task space for the P,tma-Platform is parameterized by three

variables, dl, he and theta. These variable.- correspond to a base distance, an elbow

height and an angle of elbow rotation, re._pectively. These variables are spatially

visualizable; thus allowing them to be app_'oximately identified by sight. Each vari-

able operates in the null-space of the end-effector. This means that each variable

describes a subset of the internal link cou_gurations corresponding to a fixed po-

sition and orientation of the end-effector. The secondary task being performed by

these kinematic functions is to describe tlte location of the internal links.i.e the links

between the platform's base and the end-_+ffector.The augmented Jacobian, as de-

scribed in (3.3), is calculated and is determined to be of full rank except at singular

configurations. This result is document<+d in the appendix. Since the augmented

Jacobian is not rank deficient, the kinematic functions are independent of each other

and the task vector. The internal link motion of the manipulator is termed the self-

motion manifold and is completely describ,_d by the redundant task vector z_. The

three redundant variables that comprise x,. each serve to describe an independent

subspace of the self-motion manifold of th,_ manipulator. In the next few sections,

a detailed description of each variable will be given.
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Figure 3.2: Description of Configuration variable he

3.1.2.1 Base distance

The base distance d! repr¢,sents the ,:listance from the zeroth coordinate frame

to the first coordinate tYame located ol_ l l,e base of the platform along the linear

rails. This paranleter, which is displayed in figure 3.1 ,was chosen for two reasons.

The first being t]iat it was analytically ._ilnple since it is actually the first joint of

the manipulator. Secondly, 1)y specifyilig l his redundant variable, the user is able

to translate the entire manipulator thus thronging the approach vector to the target.

,=,.

w

u

3.1.2.2 Elbow height

The elbow height h_- represents th,> perpendicular distance of the secondary

elbow from the li_le adjoining tl_e pr]mar.v ,,lbow to the wrist and is shown in figure

3.2. This parameter serves to set the v_lue of joint six and is described by the

following set of e(it_atiolls:



16
U

rl = _/,462 + D72 (3.4)

xl = ¢,452. +rl:+'_,A5*(D7,,in(q6)+A6,cos(q6)) (3.5)

./(2 • A5• - (=1:+ AS=- ,-1:):
he (3.6)V 4 * x[ 2

where zl, which represents the distance from the primary elbow to the wrist,

and rl represents the total length of link five including the offset A6.

It should be noted that due to the difference in lengths of links four and five

and the definition of he, xl ranges fl'om rl + A5 to rx/7"_- A5 2. This, in turn,

causes he to vary between 0 and A5. Also, when he is zero, this corresponds to

the PUMA elbow singularity. Singularities will be covered in greater detail in the

chapter on singularity analysis.

The redundant parameter he was chosen for two reasons. The first being that

due the existence of two elbows on this manipulator, only one is needed in order to

completely specify motion in the vertical plane. It was necessary to set one of the

elbow positions to some specified position. Also, this elbow height serves as a good

indicator of where the last two [inks of the manipulator are. The elbow height was

very useful in creating the obstacle avoidance algorithm that is discussed in a later

chapter in this thesis.

3.1.2.3 Angle of Elbow rotation

The angle of elbow rotation, theta, is described as the angle of rotation of the

primary elbow around the line a.djoining the shoulder to the wrist and is shown in

figure 3.3. This parameter defines the value of joint four and with the task vector

defines the values for joints two and three. -[he parameter theta, which is a function

of the variables n, a unit vector from the shoulder Ps to the wrist Pw, and pe, a

unit vector from the shoulder Ps to the primary elbow Pel, can be calculated as
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Figure 3.3:
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Description of Configuration variable theta

n

==

m

b

p£ --

I'el - Pa

lt/'el - Psll (3.7)
I'w - P._

j,_,_ Psll (3.8)

(3.9)

I

I: :Dn) ® (pe ® n)
co.,(thet,,) = I1: :_nll* lip,®nil (3.10)

sin(theta) = _,/I - cos'(theta) (3.11)

th, ta = t,,,,-1(sin(theta))
cos(theta) (3.12)

The variable thet_ thus represents tl,e angle of rotation of the vector pe into

the vector : &l'Otllld the unit vector n.
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The redundant variable theta model._ the redundancy inherent in the human

arm. The human arm is capable of gene.l'ating redundant motion by rotating the

elbow while keeping the wrist aad shouldel" fixed. Since the nine joint manipulator,

described in figure 3.1, is a model of the human arm, the choice of theta as a

redundant parameter is a suitable one. Aaother reason for choosing theta is that

it parameterizes the internal links into a I,lane rotating around the unit vector n.

This parameterization is of immense valu,, ill the obstacle avoidance algorithm that's
=

described in a later chapter:

In summary, the redundant task space is parameterized into three separate

subspaces by its three configuration variables. This means that each configuration

variable is independent of each other. Auy variation in one of the variables has no

effect on any of the others. The config_u'ation variables for the Puma-Positioner

and Puma-Platform inverse functions serve, to describe the position of the PUMA's

base and the position of the internal links, t'espectively. These variables can assume

a continuous range of values within the lnanipulator's workspace and allow for the

generation of an infinite number of link configurations. The fact that the redundant

task space is spanned by continuous variables is one of the major difference between

it and the pose space. The pose space is spanned by discrete variables that allow

for the generation of a finite number of link configurations.

3.2 Pose Space

The pose space is a characteristic of both redundant and non-redundant ma-

nipulators. All rigid link manipulators have a finite number of different link con-

figurations that correspond to a fixed posit ion and orientation. These different link

configurations are termed poses and comprise the pose space. The pose space is

spanned by a set of parameters termed pose variables. These pose variables are

discrete variables that can only assume one of three values. These values are one,
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negative one and zero, where zero indicates that the links are aligned. Although

both the pose space and the redundant task space represent link configurations, they

can't be combined into one space for several reasons. The first is, as stated above,

the pose space is spanned by discrete variables while the redundant task space is

spanned by continuous variables. Secondly. the redundant task space resides in the

null-space of the end-effector, but the pose space doesn't. As one induces motion

in the redundant task space, the end-effector remains fixed while the links change

configuration. However, as one goes from one pose to another, the end-effector un-

dergoes some motion before returning to its original position and orientation. A

thorough description of the pose variable._ for both inverse functions will now be

given.

L _

-z...:

u

3.2.1 Puma-Positioner pose variables

The pose space for the Puma-positioner is described by three pose variables,

right_left, wrist and wst2o..e2, which describe the poses of the PUMA. It should

be noted that since the redundant variables for this inverse function are the three

joint angles of the platform, these variables serve also to describe the pose of the

platform. Since each pose variable can assume three distinct values, the pose space

contains 27 different poses.

w

u

u

3.2.1.1 RightToLeft Arm Indicator

The C[RSSE arm has a link offset located on the shoulder of the Puma at-

tachment as described in figure 3.1 This shoulder offset leads to the definition of

left and right arm configurations. The rig]_t_left configuration variable is described

as being either left or right depending ou which of ones arms is along the shoulder

offset when one is standing on the base of the PUMA and facing the end effector.

An example of LEFT and RIGHT arm c_mfigurations is shown in figure 3.4 The

w
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Figure 3.4: RIGHT and LEFT Arm poses

right_left descriptor is describ+'d by th,' li,llowing equation:

.rl = .4.5, eo.s(qS) + .46 + c:os(q5 + q6) + D7 • sin(q5 + q6)

rightle.fI = .._g_(.rL) (3.13)

where .rl r<'present._ the distance ['r<,na the primary elbow Pel to the wrist,

Pw relative to frame four. It should b+' n,,ted that when the wrist is aligned with

the primary elbow, the arm is in an alig,tment configuration and zl is zero. In

this case, the variable rigktJ+.ft is defa,,lted to the left configuration. Another

point of interest is that when right_left i+,.zero, this signifies the PUMA's shoulder

singularity.

m

II

il

[]

m

II

II

R

m

ii

mm

I

I

[]

III

Ii

111

il

lid



21

m

NO_FEW

Z =

-- =
M

L_

i

3.2.1.2

Figure 3.5:

Wrist Indicator

Wrist in FLIP and NO-FLIP poses
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The wrist of the PI'MA attachmellt represents a spherical wrist. There are

three joints associat.ecl with the wrist; th,_s allowing the wrist to assume any orien-

tation within its joint cowlstvaillts. Due 1_, the placement of the three joints, there

are two possible solutions for each orieltlalion. The first solution orients the wrist

with a positive joint eight whih. the secowl solution utilizes a negative joint eight.

These solutions are shown in figure 3.5 wh,.re a FLIP solution represents a negative

joint eight. The ,r,'i._t indicator is used 1c, determine which solution is to be found

and is described hy:

wrist = sgn(q8) (3.14)

The point at which joint eight is ze','o is a singular point and is the PUMA

wrist singularit.v.
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Figure 3.6:

w

Wrist ABOVE and BELOW Secondary elbow

3.2.1.3 Secondary Elbow Indicator

The PUMA's elbow can l_e either at,ove or below its wrist for a given end-

effector positiotl. "rhe_e dual ._olution._ alh,w for the existence of the pose variable,

wst_to_e2, which i_ olle or uegal ire one it' 1he wrist is to the left or right of the line

adjoining the PU._IA's shoulder to its wri._l An example of these two configurations

iS shown ill figUl'O 3.6. The u,.sl_to_e2 indi,,,.tor is described by:

m

I

I

I

I

i

I

I

I

i
I

B
I

I

,'._t.to__2 = sgn(q(;,t - q6) • sgn(q6 - q6,2)

q6,1 = 92.3445_teg

q6,2 = 272.344.,_,1eg

(3.15)

The pose vat'iable ,'._t_to__ "2 as,_um_,s a value of zero when the wrist is aligned

with the PI.'.M.-k's elbow. This position [._al_o known as the PUMA elbow singularity.
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Figure 3.7:
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3.2.2 Puma-Platform pose variables

The pose .space for tile [htma-plalf,,rm is described by five pose variables,

right_left, wrist, w.,t_to__:2, e2Ao_el an,l _lbowl Since each one of these variables

can assume thre_, distinct valu¢.s, there ,r,' 729 poses in this pose space. It turns

out that there is some duplication of po.-_, variable description between the Puma-

Positioner and tile Pun_a-Platf_n'm. The' ,lescription of the Puma-Platform's pose

variables, right_b .ft. wri.st and ,t:_t_to_e2 is given in the previous section. These pose

variables only describe the PUMA sectk,l_ of the manipulator. The pose variables

e2_to_el and elbow describe tile differenl configurations of the platform and its

connection to the, PUMA. These variabtt's will now be described in greater detail.

3.2.2.1 Primary Elbow Indicator

The primar.v elbow can b_' to the right or left of the secondary elbow for any

position and orientation of the end effeclor. Due to the existence of these dual
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solutions, the pose variable, e2jo.el, describing the position of primary elbow was

necessary. The variable, e22o__ 1, is one or negative one if the primary elbow is to

the left or right of the line adjoining the secondary elbow to the wrist. The two

link configurations imposed by this variable are displayed in figure 3.7. The pose

variable, e2_to_el, is described by:

e2_to_el = sgn(q5 - 90) * sgn(270 - q5) (3.16)

Although the pose variable, e2_to_ei, describes the position of the primary

elbow with respect to the secondary elbow, it is not an independent variable. Due to

the formulation of the redundant parameters, the variable he describes the position

of the primary elbow relative to the secondary elbow. This fact forces the

variable, e2_to_el, into a purely descriptive role. It can describe the config-

uration of the manipulator's primary elbow. However, to place the manipulator

into a certain e2_to_eI configuration, the variable he has to be above or below a

certain threshold value. This threshold value corresponds to the value of he when

the primary and secondary elbows are aligned and is described by:

x[

he thr

e2_to_e I

= x/.45 • (llPw - -P-_It2 - D4=)+ D4 • (rZ_ - A52) (3.17)

,/(2. A5, zl) 2 - (xi 2 + A52 - r12)2
(3.18)V i • xl 2

= sgn(he - he the) (3.19)
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3.2.2.2 Elbow Indicator

The position of the primary elbow is controlled by two joints, joints two and

three, which are aligned in such a manner" _ts to cause the existence of two solutions

for each position of the primary elbow. These solutions are described by the pose
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Figure 3.8: Primary elbow in FLIP and NO-FLIP poses

variable, elbow, which determin('s whether joint three is negative or not. An example

of these solutions is displa.ved in figure :3.._'3where a FLIP solution indicates a negative

joint three. The variable ,lbow is describe, I by:

u

elbow = .sgn ( q3 ) (3.20)

where the poinl at which joint th!'_'_' is zero is an algorithmic singularity and

is described in chapter five. The pose variable elbow is another pose variable that

serves only a descriptive role in the inverse" function. However, this is not due to an

overlap between the redundant task space and the pose space, as was the previous

case. Instead, this pose variahle was d,.fi,md inside the inverse function in order

to avoid the 18U degree joint shift that o('_urred whenever the algorithmic singular

point (q3 = 0) was crossed. Tlw pose variable elbow was defined internally as:

w



26
u

I

elbow = _gn(Pel_ * Psw_ + Pel_ • Pswy) (3.21)

and assumes the value of negative one whenever the primary elbow and wrist

are in different quadrants.

In summary, the forward kinematics provides the mapping from the joint space

of the CIRSSE manipulator to its task sp_ce. Its task space is described by a task

space vector which consists of a three dimetlsional positional vector and three orien-

tation vectors. Since the CIRSSE manipltlator is a redundant (9 dof) manipulator,

the task space was augmented with a 3-dimensional redundant task space. This

augmentation ensured that each joint in the joint space was independently repre-

sented in the task space. The redundant task space was defined separately by each

one of the inverse functions, the Puma-Positioner and the Puma-Platform. The aug-

mented task space along with the necessat'y pose variables ensured that a one-to-one

and cyclic mapping was generated betweel_ the joint space and the augmented task

space. This one-to-one mapping proves to l_e crucial in the generation of the inverse

mapping, the inverse kinematic._.
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CHAPTER 4

INVERSE KINEMATICS
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The inverse kinematics can be described as the mapping from the task space of the

manipulator to its joint space. This mapping is the inverse of the mapping described

in (3.1) and takes the form of:

q = f-'(,c) (4.1)

where q is a (n x 1) joint vector, a' st (m x 1) task vector and f-' is a non-

linear function. The above mapping generates a set of joint vectors for each task

vector. For non-redundant manipulators, the set of joint vectors that is generated is

discrete. Pose variables need to be specified in order to select a unique joint vector

from the set. However for redundant manipulators, an infinite set is generated by

this mapping. Even with the pose variables, an infinite number of joint vectors can

be chosen for each given task vector. As indicated in chapter three, the inverse

function solves this problem by determining an additional set of constraints that are

termed the redundant task space. These constraints along with the task vector and

pose variables allow one to select a unique joint vector from the infinite number of

joint vectors generated. Figure 4.1 describes a model of the CIRSSE manipulator

with its associated coordinate fl'ames. Tile coordinate frames are defined under

the modified Denavit-Hartenberg representation which is described in the appendix.

The two inverse functions, the Puma-Positioner and Puma-Platform, were developed

based on this model. These inverse functions both utilize a redundant task space

and pose space, as described in chapter three, to generate the joint space vector.

The basic process is to request a task space vector, redundant task space vector and

pose variables from the user and to then geaerate the corresponding joint vector. In

:27
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Figure 4.1:
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Model of CIRSSE manipulator with coordinate frames

the ensuing sections, a detailed descripli,)l_ will be given of the inverse mapping of

the inverse functiuns, the Punaa-Positiotler and the Puma-Platform.

4.1 Puma-Positioner inverse function

The Puma-l)osition_,r models the niae dof CIRSSE manipulator, displayed

in figure 4.1, as a PlrXIA ma.il)ulator with a moving base. The pos[tion of the

platform is specified I)y the us_'r through 1he configuration variables, ql, q2 and q3.

This position alo,g with the desired posilion and orientation of the end-effector

and the pose varial)les is then used to sc, l_e for the remaining six joints. The pose

variables are described by:

I LEFT )
,'ight_le f l = (4.2)
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1 NO-FLIP)
wri.st = (4.3)

- 1 FLIP

wst..to.e2 = (4.4)
-1 BELOW

4.1.1 Calculation of joints 1 - 3

The values of joints one, two and three are just the values of the three con-

figuration variables specified by the user, qt, qa and qa. The position of the primary

elbow is then defined as:

w

L

F .
m

=

u

AO + D t • cos(q2) * sin(qa)

Pel = 'ql + D4 • sin(q2) * sin(qa) (4.5)

D2 + D4 * cos(qa)

Once the position of the primary elbow is known, the task space vector can be

recomputed relative to the coordinate frame attached to the primary elbow. This

new task space vector along with the pose variables is used to compute joints four

through nine.

fl

4.1.2 Calculation of joints 4 - 6

The first step is to calculate the task vector relative to frame three. This is

calculated by:

-= r, /q,,q=,q_) (4.6)

T_ = I_ * T_9 (4.7)

R_ P_ ] (4.8)r:
00 01 J
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Figure 4.2: Puma-Positioner: Calculation of joint 4

where T° represents the task relativ,, to frame zero and T 3 represents the task

relative to frame three. This iuformati(., is then used to calculate joints four, five

and six.

4.1.2.1 Joint 4

....... Referring t0 figtn'e L2. j,,int fot,,'=of the manipulator reflects the two pose

configurations. LEFT and RIGHT that II,e PUMA can assume. The solution is

obtained b v a projectiozl of the positiou v,'ctor Psw unto the X 3 - Z 3 plane.
I

m

r = _/p.r 2 +p z2 (4.9) Z

IR

ab = ?r 2-/)6 2 (4.10)

_h,(q_). = ..in(b-a) (4.11) _-

co._(q_) = ,'os(b- a) (4.12) _

.¢i,(q_) = ..in(-b- a) (4.13)

• r

co.,(q4) = ros(-b- a) (4.14) =

m

m

|
I

II

[]
[]

m

B

!

i

l

B

m

II

m



_ 31

-Y3
tl.l_'r, ABOVe)

•- q.q. 90._,1) -.

• q6-p-* %

-Y3

Ps

{_GWi',_LOW)

q$. -270 • (a . |)

q6- p,w

X_

;,.,.

p

-Y3

Pwl

¢
_ (P,ay)

.-
.." q5-9o.(,._

."" q6--p- *

,_ • X:3

PI

-Y3

P*I

Ps

(RIGHT. AmO',_E)

q5 - .TIO . (,. I)

_- p-•

X3

Figure 4.3: Puma-Positioner: Calculation of joints 5,6

Equations 4.11-4.14 can be combin_,d by using the pose variable right_left to

solver or q4.

L_

F
b

-px * 196 + rightdeft * pz * ab

q4 = tan-'( _. . D-6 +r_-*"px *'-a7 ) (4.15)

4.1.2.2 Joints 5 and 6

Joints five aad six of the manipulator reflect the multiple solutions associated

with the pose variables, right_h ft and ,'._/_to_e2. Referring to figure 4.3, joints five

and six are calculated by projecl ing the po-ition vector Psw unto the X a- y3 plane

and then using the pose descripvovs thai are defined in (4.2-4.4). Joints five and six

are calculated by:

,.t = + (-p,-/)4): (4.16)
.45 2 + ,rl _ - rl _

co._(9) = "2* .45 * a'l (4.17)
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Calculation of the PUMA's wrist joints

I-

.rl 2 + D4 _ - (ab: + pg2)
co.,_((,) =

2*.rl * DL

_i,((,) = ,'ight_h'ft , X/] -. cos2(a)

co.qq_) = eo.s(g) • cos(c_ + right_left • sin(g) * sin(a)

si,(,i-,) = ._i,,(g) * co.s(c,) - right_left, cos(g) * sin(a)

.*in(qz)
q-_ = /(m-l(_)

cos(qa)

.452 + rl 2 -.rl '
co._(p) =

2 * .45 * r[

si,,(l,) = ,'ight_le:ft • _/I -cos2(p)

-si,(p) * .46 - cos(p) * D7

q,, = t(,,,-'(-co,_(1,-----_- 2 .46 _ sin(p) . D7 )

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)
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4.1.3 Calculation of the PUMA's wrist joints 7- 9

The PUMA's wrist joints and are ,t:od to place the end-effector into the de-

sired orientation. The desired orientati,!_ is described by the vectors n,s and a,

as described in figure 4.[. Referring to fig_re 4.1, vector a represents the approach
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vector, vector _ the sliding vector and n is the normal vector representing the cross

product of s and a. Using these orientatiou vectors and

R_(qt..qs) = [X 6 y6 Z 6 ]

joints seven, eight and nine will now be solved.

(4.27)

m

=

m

F •

b

E==

4.1.3.1 Joint 7

Referring to figure 4.1, joint seven is defined as how much the wrist must rotate

in order for joint eight to _dign Z s with o. Figure 4.4a describes the FLIP and NO-

FLIP configurations for the wrist where the solution for joint seven is defined by:

q7 = tan-'( wrist * (a Q Z 6) _ (4.28)
t,,_',:_t * (a 63 X s)"

4.1.3.2 Joint 8

Referring to figure 4.1, joint eighl is defined as the amount of tilt that is

necessary in the wrist in order for Z s to be aligned with a. Figure 4.4b describes

the FLIP and NO-FLIP configurations for the wrist where the solution for joint

eight is defined by:

qs = tan_t( wrist , (a Q X r)0 ) (4.29)

4.1.3.3 Joint 9

Referring to figure 4.1, joint nine is defined as the amount of rotation necessary

to align s with yg. Figure 4.4c describes the FLIP and NO-FLIP configurations for

the wrist where the solution for joint nine is defined by:
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q9 = tan=l(-wrist , (o® X s)
w,'ist * (oQ Z s) ) (4.30)

4.2 Puma-Platform inverse function

The Puma-Platform models the PUMA and platform as a nine joint manipula-

tor. The first six joints of the manipulator are used to position the end-effector and

place the links into some desired configuration. The constraints that define these

joints are the position vector and the three configuration variables. The last three

joints are used to orient the end-effector and are defined by the three orientation

vectors n, s and o. These three joints a.r_' the PUMA's wrist joints and are defined

in the previous section. The process for cal,ulating the first six joints can be divided

into two steps. In the first step, joint four is set to zero and the remaining joints are

calculated. This step defines the unrotated position of the primary elbow, Pal. In

the second step, the primary elbow is rotated by theta radians and then joints two

through four are calculated. A detailed description of the calculation of the first six

joints using the position and configuration constraints will now be given.

4.2.1 Calculation of joints with joint four set to zero

Joints one through six are ca!culat,:d with joint four set to zero. These joint

values correspond to a zero degree rotation of the primary elbow by theta. However,

since joints one, five and six are not infl_tenced by theta, their values calculated in

this section represent their actual values.

4.2.1.1 Joint 1

Joint one takes the value of the coafiguratlon variable dl and represents the

actual value of joint one since it's not affected by the configuration variables, he and

theta. It is described by:
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Figure 4.5: Puma-Platform:
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Calculation of joint 2 (Joint 4 = O)

m

q, - dl (4.31)

4.2.1.2 Joint 2

Referring to figure _.5. j,,int fou,' ,,I the manipulator reflects the two pose

configuratious. LEFT and RI(;HT thai l l_e PUMA can assume. The solution is

obtained by a projection of the position v(.ctor Psw unto the X ° - y0 plane.

,. = jp_, + vj, (4.32)

ab = J_'- z_6_ (4.33)

.si,(q_) = .,i,,(b- a) (4.34)

co.._(q_) = cos(b- a) (4.35)

_i,(q_) = .,in(-b - a) (4.36)

co,,(q_) = cos(-b-a) (4.37)

5
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Figure 4.6: Puma-Platform: Calculation of joints 5,6

Equations -t.:_4-4.37 can l_e combit_',l by using the pose variable right_left,

which is defined in (4.2) to solve for q2.
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-px * 1")6 + rightjeft * py * ab)
= " (4.38)

4.2.1.3 Joints 5 and 6

Joints five and six of the ,,lanipulato, reflect the multiple solutions associated

with the pose variables. ,'ightJ_.ft and w.t_to_e2. Referring to figure 4.6, joints five

and six are calculated by project ing the position vector Psw unto the X °- Z ° plane

and then using the pose descriptors thai ate defined in (4.2-4.4). Joints five and six

are calculated by:

m

m

m
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.rt = x/.45' - he 2 + v/,:t 2 - he 2 (4.39)

.452 + .rl 2 - r12 (4.40)
co._(g) = 2 * .45 • a'l
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Figure 4.7: Puma-Platform:Calculation of joint three (Joint 4 -- 0)

si,(g) =

co.,(a) =

si,, (,) =

cos( ,l_) =

si,(q_) =

q5 --

co._ll.,) =

sin(p) =

q6 =

_/t - co.,:2(g) (4.41)

.ri 2 + D42 - (oh: + p.2) (4.42)
2*xl * D[.

,'ight_le ft * _/1 - cos2(a) (4.43)

cos(g) • co.s(c,I + ,'ight_left • sin(g) • sin(a) (4.44)

._in(.q),cos(,I-,'ight_left,cos(g)*sin(a) (4.45)

siti(q._)

ton-'_ cos(q_) ) (4.46)

.45.2+ ,'I2 -.r I2 (4.47)
"2* .45 * rl

right_left * _/I - cos2(p) (4.48)

-sin(t,) * .46 - cos(p) • D7 (4.49)
lan-tt -cos(l,) * 46 + sin(p) * D7 )

f

4.2.1.4 Joint3

Referring to figure 4.7. joint thrc_' is calculated with joint four set to zero by

projecting the position vector I_.*tt' into the X 2 - Z 2 plane. Joint three is defined

by:
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4.2.2

P2x'

P2z'

P2 = P_ • P%w (4.50)

= .45 • co_(q_)+ ,46• co_(q,+ q6)+ 07 • si,(q_ + q6) (4.51)

= D4 - A5 • sin(qs) - .46. sin(qs + q6) + D7 * cos(qs + qs) (4.52)

q3 = tan-l( P2z' * P_* - P2x' * P_,_ (4.53)

Rotation of primary elbow by configuration variable theta

The position of the unrotated primary elbow can be calculated by:

D4 * cos(q2) * sin(q3)

Pe' = D4 * si,z(q2) * sin(qa) (4.54)

Dq * cos(qa)

Due to the PUMA's shoulder offset, the position of the unrotated primary

elbow doesn't correspond to the zero position for theta. In order to compensate

for this offset, the rotation induced by dli._ offset has to be subtracted from theta.

This subtraction will rotate the primary t,ll)ow by the desired amount. The primary

elbow rotation induced by the shoulder offset is termed theta' and is calculated as

follows:
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n - (4.55)
IIP_wll

zCn = "_" (4.56)

O

Pe' C ,
peCn - (4.57)

IIPe' s '_ll

th.eto' = tan-_( zCn QpeCn ) (4.58)
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Figure 4.8: Evaluating the pose variable elbow

Once theta' is calculated, the new value for theta becomes

m

th,:ta = th, ta - theta' (4.59)

This value Ib," /her. is then used t_, rotate the primary elbow around n. The

new rotated posilion of the i)rilnary elbow is determined by:

Pe = ,7- P_-' . (1 - cos(/heta)) + I','* cos(theta) + n ® Pe' * sin(theta)

(4.60)

4.2.3 Calculation of Actual joint values

Once Pe is calculated, the ne.;zt st,'l, is to calculate the pose variable elbow.

This pose variabh' determines whether joi,,t three is positive or negative. Referring

to figure 4.8, it ._hould be note, l that thi._ manipulator's configuration reflects the

case when the posit ion of the primary elbow and the position of the end-effector are
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Figure 4.9: Puma-Platform:Calculation of joints 2,3 (Actual values)

in two different ¢luadrant._. In this cas_,..i,4nt three assumes a negative value and

the pose variable elbow is set to negative oae. The pose variable elbow is described

by:

I
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g

e lho,. = sg,_(P_, . t,,7: + P% • py) (4.6i)

Given the position of th,' rotate,I primary elbow Pe and the value of the

pose variable, elbow, the actual values Ib, joints two, three and four can now be

calculated.

l

i

Z

4.2.3.1 Joint 2

Referring to figure t.9a, joiut two is ,alculated by:

i
U

m

I

q'2 = tan-'( '-Ib°w*Pe_
, lbow • Pe. ) (4.62)
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Figure 4.10: Puma-Platform:Calculation of joint 4 (Actual value)

4.2.3.2 Joint 3

Referring to ligure-t.gb, joint three i.- calculated by:

._,,,,,• gP_ + P'#
q:, = to,,-'( ) (4.63)

Pe:

=
w

!

4.2.3.3 Joint 4

Referring to figure -t.10, joint four i.- calculated by mapping Pew' and Pew

into the .¥3 _ Z:, plane. The vt'ctor Pe ," represents the vector from the unrotated

primary elbow to the wrisl a_cl Pew rt'prt'.,,'uts the vector from the rotated primary

elbow to the wri._t..)oint ['otn" is defim'd I_v:

P°ew = P,'- D4 *, Pe - P., (4.64)

P_.u. = 1_iI.P°.., (4.65)
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p3 ew' =

cos(q4)

sin(q4)

A5 • cos(qs) + A6 • cos(qs + q6) + D7 • sin(qs + q6)

Paew ® Paew'

IIP3ewll,IIP3ew'll

(4.66)

(4.67)

(4.6s)-- sgn(tPaewO P3ew'l_) _,_/1 - coa2(q4)

q, = tan-'(sin(q4))" (4.69)
cos(q4)

In summary', the inverse kinematics g_,nerates the mapping from the task space

to the joint space. Two inverse function_, the Puma-Positioner and the Puma-

Platform, were generated to provide mappings from the augmented task space,

composed of the redundant task space and Cartesian task space, to the joint space.

These mappings produce unique joint ve(tors through the definition of the pose

variables. However, it is not always possible to find a unique solution. There exists

certain points within the manipulator's workspace where a unique solution doesn't

exist. There points are termed singular points and are the subject of the next

chapter.
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CHAPTER 5

EFFECT OF INVERSE FUNCTIONS ON MANIPULATOR

SINGULARITIES

As a manipulator traverses its workspace, there exists certain points where the ma-

nipulator loses some degrees of freedom in its motion. These points are termed sin-

gular points. Singular points are generally defined as points in the joint space where

the manipulator loses the freedom to travel instantaneously in any direction. This

loss of motion is reflected in the Jacobia.l_ which becomes rank deficient at singular

points. From a different perspective, at ,x singular point the inverse Jacobian map-

ping produces infinite joint velocities for bounded task velocities. Singular points

can be further characterized by being placed in one of two categories, boundary

singularities or internal singularities. Boundary singularities exist on the manip-

ulator's boundaries and define the case when the manipulator is at its maximum

reach. In this case, the manipulator is fully extended and no joint motion can cause

the end-effector to extend out any further. Internal singularities are singularities

internal to the manipulator's workspace.

Singular points are obviously of greztt importance to the user. They define

those areas of the manipulator's workspace where motors could be burnt out due to

the generation of large joint speeds and torques. It would be satisfying to be able to

generate a workspace that is free of singularities. For non-redundant manipulators,

this is impossible. All non-red_mdant manipulators have singular regions in their

workspace and the best that can be dolle is to locate and avoid them. However,

redundant manipulators offer the user some freedom in terms of the singular regions.

Redundant manipulators all have singular regions. However, an inverse function can

be defined for a redundant manipulator that will some effect on the singular regions.

Redundant manipulators have an infinite number of joint vectors associated with

_:_
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each task vector. Inverse functions determine a unique joint vector that is associated

with each fixed task vector. Since inverse ftmctions determine the joint vectors, they

can be used to avoid singular points. However, the trade, off is that inverse functions

generally introduce a third type of singulal" point. This singular point is termed an

algorithmic singularity and indicates the case when the kinematic functions that are

defined for the inverse function lose rank. In the next couple of sections, the singular

regions of the CIRSSE manipulator will be presented. Also, the effect of the two

inverse functions, the Puma-Positioner and the Puma-Platform, on the workspace

and singularities of the CIRSSE manipttlalor will be discussed.

5.1 Characterization of the CIRSSE manipulator's singularities

The CIRSSE manipulator consists of the six dof PUMA atop a three dof plat-

form. In order to evaluate the singularities of this manipulator, the Jacobian was

calculated. In order to simpli_ the form of this Jacobian, the Jacobian matrix of

frame seven relative to frame six Jr6 was calculated. The calculations of these Jaco-

bians are documetlted in the appendix. The singularities of the CIRSSE manipulator

occur at the points where the Jacobian..]_;, is rank deficient. Due to the structure

of this manipulator, a necessary condition t'or it to be in a singular configuration is

for the PUMA to be in a singular configuration. These singular configurations of

the PUMA are defined as:

• PUMA wrist singularity: This is an internal singular point that occurs when

Z r and Z _ are aligned or qs = 0.

• PUMA elbow singularity: This is a boundary singularity that occurs when the

D7
elbow is fully extended or qs = tan -_ (_'g).

• PUMA shoulder singularity: This i., an internal singular point that occurs

when the wrist is aligned with the PI'MA's shoulder. This is mathematically
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Figure 5.1: Singular configurations of CIRSSE manipulator

defined as when .43 • co.s(q._) + .46 • ,'os(qs + qs) + D7 * sin(qs + qs) = 0.

Figure 5. t p,'ovides sample singular ,'(,nfigurations for the CIRSSE manipulator

and indica.tes the possible directions of iI,,tion.

5.2 The inverse functions and the workspaee singularities

The inverse ['unctions of a manipui,,t,,r are distinguished from one another by

their parameterization of the redundanl l ask space or their kinematic functions.

The kinematic functions of th,' Puma-Po,itioner are identity functions that sim-

ply repeat the first three joints, q,. q2 allc] q3. Based on this parameterization, the

Puma-Positioner has no effect ,,n the ('I[_';SE manipulator's workspace or its sin-

gular points. With this i)ara.meterizatiot_, any possible joint configuration within

the reachable joint space cau 1)e used. The Puma-Platform has three kinematic

functions, dl. he and theta that paramel,.t'ize the redundant task space. This pa-

rameterization h_s two nolable effects ot_ the CIRSSE manipulator. First of all,
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it defines an unreachable region within the. manipulator's workspace based on the

PUMA's shoulder offset. Due to joint four being defined by theta in the Puma-

Platform, the end-effector is unable to reach inside a circle of radius LY6 that's

centered on link three. The second effect of the Puma-Platform is the introduction

of two algorithmic singularities. The augmented Jacobian, as defined in the ap-

pendix, is composed of the task and redundant task space velocities. The case when

the task and redundant task velocities become dependent upon each other and the

augmented Jacobian becomes rank deficient is termed an algorithmic singularity.

The algorithmic singularities are defined a._:

• Primary elbow singularity: The primary elbow is directly above the manip-

ulator's shoulder and no rotation by theta can occur. This is represented by

joint three going to zero.

• Secondary elbow singularity: The wrist is close to the primary elbow and he

is at its maximum value. This occurs when he = A5 or q6 = 267.67 deg.
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it should be noted that the Seconda ry elbow singularity occurs outside of joint

six's joint range. So this singular point is itever seen.

In summarv, since tlie _nverse functions contro[the joint configurations for a

redundant manipulator, they are capable of altering the manipulator's workspace

and singular points. However, one drawback is that the inverse functions tend to

introduce algorithmic singular points. The inverse functions, the Puma-Positioner

and the Puma-Platform. didn't have a great influence on the manipulator's singu-

larities. The Puma-Platform actually introduced two more algorithmic singularities.

However, an inverse function is generally limited to the task its designed for. These

two inverse functions were not designed to avoid singular points. Some tasks for

which these inverse functions were designed for, such as joint limit avoidance for the

Puma-Positioner. will now be discussed.
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CHAPTER 6

APPLICATION OF PUMA-POSITIONER TO JOINT LIMIT

AVOIDANCE

Robotic manipulators can be viewed as a set of links each interconnected by a

joint. Each joint, whether revolute or prismatic, is capable of going through a

certain range of motion. The endpoints of this range are termed the joint limits

for each joint. Based on these joint limits, the joint space of a manipulator can

be divided into a reachable and unreachable subspace. The reachable joint space

consists of all the joint vectors whose components reside within their joint limits.

Joint limits generally pose a significant problem to the task planner. For instance,

given a planned Cartesian path, there is no obvious method to ensure that the

corresponding joint path resides within the reachable joint space. If the configuration

of the links is not an important issue to the user, then a solution to the joint limit

problem presents itself. This solution consists of varying the link configurations for

a fixed task vector until a reachable joint vector is produced. For a non-redundant

manipulator, there only exists a discrete n umber of link configurations, termed poses,

for a fixed task vector. Due to the existence of only a small number of poses, this

solution would not be very effective for a non-redundant manipulator. However,

the CIRSSE manipulator is a redundant manipulator with three e_ra dols. By

using the redundant task space and the pose variables, an infinite number of link

configurations can be generated for a fixed task vector. A solution to the joint limit

problem for the CIRSSE manipulator is het'eby presented that augments the Puma-

Positioner inverse, function with a decision algorithm. This algorithm generates the

redundant task vector, ql,q2 and q3 based upon certain predefined criteria. This

criteria is enumerated as follows:
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• The task vector constraints, position and orientation of the end-effector ,must

be met. The position constraints have the higher priority and are the first to

be met.

• The resultant joint vector must reside in the reachable joint space. There are

some cases in which the resultant joint vector is in the unreachable joint space.

In this case. a solution is found and l ermed close that consists of clipping the

joints at their joint limits.

• The final criteria is to minimize flipping the PUMA's pose during path traver-

sal. Every time the PUMA's pose is flipped, the resultant joint vector deviates

significantly from the previous joint values. This doesn't allow for a smooth

traversal of a given ('.artesian path. The PUMA's pose is flipped only when

it's the only solution to meeting the previous constraints.

To summarize, the joint limit avoidance routine can be broken down into a

series of steps. Given the task vector, thr_e user defined control variables and the

PUMA's pose, the decision algorithm generates a set of Puma-Positioner configura-

tion variables and the PUMA's pose variai)les. These variables serve to satisfy the

previously defined criteria. These pose a l,d configuration variables are then used

in conjunction with the ta.sk vector by the, Puma-Positioner to generate the corre-

sponding joint vector. A thorough description of the decision algorithm will now be

given.

6.1 Definition of the decision algorithm

The decisiou algorithm d,_.termines the values of the redundant task vector,

(ql, q2, q3) and the PUMA's pose, right_l_.ft, wrist and wst..to_e2. In order to pro-

duce these parameters,some simplification_ were made. The manipulator's link con-

figurations were restricted to those displayed in figures 6.3-6.4. Also, joint four of

u

I

I

i

m

m

I

[]

I

i

I

U •

z

Ill

z

m

[]

m

M

z

m

I

II

I

I



49

w

L--:

i

/

/ P,,

j ........ .,.P7 ....

,' Pe I • Po

L.;'..';.......2'
[aaJ_

................ o_ .... _ ........... ... .... . ............... a..

"tO
J

Figure 6.1: Generating configuration variable ql

L_
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the manipulator was fixed at zero to ens, lr," that the links were always in the plane

perpendicular to the X ° - _-0 plane. Thi._ is explained in greater detail in the sec-

tion on meeting lhe oriel_tati0t_ constrai,l_i The configuration and pose variables

are now defined to meet the pr_'defined col_straints.

F_

aim

6.1.1 Configuration variable ql (Joint 1)

Joint one is a linear .ioint and co!'v,'sponds t6 a translation of the entire ma-

nipulator" along tl_, linear rails. Since tl,i- joint moves the entire manipulator, its

motion is restricted alid controlled by tl_,, ,Iser. There are two cases for which joint

one motion is ge,c'rated. Movement is i_il iated if the desired position is outside the

manipulator's reach or if the desired position is less than some user defined thresh-

old. If the desired po._itioJ_ is outside the _anipulator's reach and motion along the

linear rails would place the manipulator within reach of the desired position, this

motion is taken. Referring to figure (i.I. Ihere exists a range of values for ql that

would allow the l_lanipula.tor to reach tl_c, target.The two positions, labeled P1 and

P2, displayed il_ this figut'e indicate the ewi-points of this range. The configuration
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variable q, is defined by:

ql = ¢_,d+ w - _g,_(;_J)*2 • (0.5- ara) • x/rmax_- (px_+ pz_) (6.1)

where rmax is defined in figure 6.2 _md table 6.1 and ctrll is a user defined

variable that varies between zero and one. This variable determines how far the

platform will move in order to reach a point outside its current workspace. A value

of zero defines the smallest distance that the platform can move and still reach the

target. If the target is outside the manipulator's reach even with motion along the

linear rails, then the manipulator is brought as close as possible to the target. This

point is defined as having the manipulator being directly in front of the target or at

the closest joint one limit. In the second case, a minimum threshold is determined

by a second control variable, ct,'12. This variable defines the threshold Pth_ by:

P,h_ = pmin + ct,'12 • (pmax -- pmin) (6.2)

where prni,7 = .v2m - rl and pma.r = rmax are manipulator defined values

that are defined in figure 6.2 and table 6.1. Joint one is then defined as
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q, = q;'_+ pv + Jp_ - (p_ + p_') (6.3)

6.1.2 Configuration variable q2 (Joint 2)

Joint two places the end-effector in tlte X ° - yo plane. As in (4.38), joint two

is defined by:

p - p _ P- x*[76+right left, y, px 2+ y2_1,762

q: = tan-_( py • [76 + rightjeft • pz * _/pz 2 + py2 _/762 ) (6.4)
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m rmax

xlb

p6b

xla

p6b

x2m

p5m

sqrt(D4' + (.45 + R1) _ - 2. D4 * (,45 + R1) * cos(q3max - qp))

sqrt(Ah' + R1 2 - "2* .45 * R1 * ,'o.,(q6max + qrl - 7r))

sqrt((Dq+.45)2+Rl_,'r2,(Dl +A5),Rl,cos(q6maz+qrl _))

sqrf(.45' + RI 2 - "2* A5 * R1 * ,.,,._(q6min + qrl))

sq,'t((D-t + .45) 2 + RI: - 2. (DI -I- AS) * R1 * cos(q6min + qrl))

sqrt(D4" + .452 -"2 * 1)4 * .45 * c.s(qSmax))

sqrt(D4 _ + (.45 + I'tI): - "2. D_ * (.45 + R1) * cos(qSmax))

Table 6.1: Distance constraints

If this calc_liated value is outside joint two's limits then the right_left pose

is flipped and joiut two is rec_dculated. Due to the definition of the right_left

pose, joint two c_,n effectively cover the _,l_tire X ° - },-o plane by flipping this pose

whenever joint two is outside it_ limits..l_,int two actually covers a donut centered

on the X °- }.-o plane. Tlw out_'r radius is ,lescribed by rmax while the inner radius

is defined by the lengtla of tim PU.MA's .-1._ulder offset,/96.



52
n

Figure 6.3:
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Range of qt_ angles for wrist ABOVE secondary elbow

6.1.3 Configuration variable q.3 (Joint 3)

Joint three alibi tile ,'.._J0_e2 pii._, are used to m_t the verticai position

constraint and tl_e orientation constraiv_t_. Initially, the current wst_to.e2 pose

is used to determine the range of joiut thr_e angles that would match the position

constraints. If uo range is found then tiw ,'_t_to_e2 pose is switched and a new range

of joint three angles is fouled. If the oriels1 _tlion constraints fall within the joint three

range, a joint three vaiue is ._elec-ted throt_h the user defined control variable, ctrl3.

However, if the orientation col_straints f_ll outside the joint three range and the

wst_to_e2 pose h_._a't already bc'eu swit_h_,,I, then the wst.to_e2 pose is switched. If

after switching the w._tjo_e2 po._e, the po_il ion and orientation constraints still can't

be met, theu the .ioivlt._ are clipped a.t tl,,ir limits and the joint vector is returned

with the appropriate statu._. A detaile, I description will now be given of how the

joint three range is calculated.

II

n

I

m

I

m

U

z

m

m

I

m

m

i

E

II

m

I

m
m

g

m

I

B

m

m



53

===

i

r

m

n

9

= L

Figure 6.4: Range of qn angles for wrist BELOW secondary elbow

6.1.3.1 Meeting the position constraints

Figure 6.2 ,lescribes standard link c_,nfigurations of the last three links with

joint four set to zet'o and the P['MA's sh,>,llder offset parallel to the X ° - yo plane.

Since , as seen i_t this figure, the ang[_' ,ll_ relates directly to the end-effector's

orientation, the a_Lgl_ that meel the dist am:e constraints are expressed in qn instead

of in q3. The position constt'ainls can be expanded into a set of distance constraints

that are a factor of the link lengths and lh,. joint limits. These distance constraints

are described in [igtu'e 6.2 and t abulat,_,l in table 6.1. These constraints and the

wstto_e2 pose describe the range of qn az,gles generated.

Figure 6.3 ,lesct'ibes the configuratio_Ls that the links are allowed to be in for

the case where the wrist is abe,re the sec,,ndary elbow. These configurations are

placed in groups based on the distance p ,>1 the wrist from the shoulder. Each group

indicates a range of qn angles where ql_ varies from qnmn to qnmz. Based upon
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Figure 6.5:
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Description of orientation coordinate frame

the distance p. a range of q,, angles is g(.,w,-ated. It should be noted that if p is less

than pSm, no range of q,, angles can be g,-uerated. This means that for p less than

pSm, the wrist can't be placed above the _econdary e!bow:

Figure 6.4 describes tile configurat.io,,s that the links are allowed to be in for

the case where th,' wrist is below the secol,lary elbow. As in the previous wst_to_e2

pose, the range of q, angles generated is I,ased on the distance p. This wst.to_e2

pose is more flexible tha,, the [_t'evious po_e. If a position can't be reached in this

pose then a clipped join! solution is generated. As seen in figure 6.4, such a case

occurs when p is less than .r2n, - rl.
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6.i.3.2 Meeting the orientation constraints

Once a range of q,_ angles is gen,_ra,ed that meets the position constraints,

the orientation co,_straints are then" appli,,d to this range. The orientation of this

manipulator is d(,fined by the last thr,',..ioints of the manipulator, qr, qs and q_.

The orientation ,'onstraints are based ttl_On the joint Iimits of these joints. Joint

nine has a joint range that exceeds 360 4,',4rees. This indicates that a solution can
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Figure 6.6: Description of orientation constraints

always be found that resides within the' .jt,int limits of joint nine. Joint seven has

a joint range thal's less than 360 degr_,s. However, by switching the wrist pose

whenever joint seven is out of range, a ._,l_tion can still be generated that's within

joint seven's joitll ra.nge, t{owever, if the ,'vi._t pose is flipped, this means that any

objects in the etl(I-eff¢'ctor's gra._p will I)_. flipped also. A status flag is set to alert the

user when this occnr._. The orientation col_straints are thus based on joint eighth's

joint limits. The approach vect_)r a is dcl_,rmined relative to the coordinate system

defined in figure (i.5. It should be noted lhat joint four was set to zero to ensure

that the X'* - Y" plane was always parall,.1 to the X ° - y0 plane. Once the vector

a '_ is calculated Ihen. as displayed in l_iglll'e 6.6a, two vectors ,amin _ and amax '_

are calculated based on joint eighth's lindt. These vectors determine the section of

the X _ - Z" that 1he end-effeclor has to l,e in so that the joint solution generated

is within joint eighth's limits. Three ca._,.s are displayed in figures 6.6b-6.6d. In

the first case (Figure 6.6b). the, entire q, range meets the orientation constraints.
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In the secondcase(Figure 6.6c), one endpoint of the qn range doesn't meet the

constraints. In this case, a new qn endpoint is defined as the closest orientation

constraint . The last case (Figure 6.6d) shows the entire qn range not meeting the

orientation constraints. In this case, the q, range is reduced to the endpoint that's

closest to an orientation constraint and a status flag is set. Once a range of qn

angles is generated, one of them is selected through

I

m

m
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m
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m

[]

qn = qnmn + ctrl3, (qnmx - qnmn) (6.5)

where ctrl3 is a user defined contt'ol variable that varies between zero and

one. Given the configuration variables, ql, q2 and q3, the PUMA's pose and the task

vector, the Puma-Positioner algorithm is used to calculate the corresponding joint

vector.

In Sunu-nary, the joint linfit avoidance scheme is defined by augmenting the

Puma-Positioner with a decision algorithm. This decision algorithm determines the

configuration variables and the PUMA's pose based upon certain predefined criteria.

The Puma-Positioner then uses the configlwation variables , the DUMA's pose and

the task vector to generate a reachable join t vector. This algorithm is typical of the

approach taken towards inverse functions i_) this thesis. The algorithm is not generic

and can't be easily applied to all manipulators. However, clue to its speciafization,

it's both fast and efficient. These are trait.s that are especially appreciated in the

obstacle avoidance scheme that will now 1>,_discussed.
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CHAPTER 7

APPLICATION OF THE PUMA-PLATFORM TO OBSTACLE

AVOIDANCE

The CIRSSE robotic facilities consists of two nine dof manipulators operating along

a linear rail. Each manipulator operates in an environment that' s filled with po-

tential obstacles. Collision avoidance of lhe end-effector can be implemented by

careful planning and is generally a task o[ the task planner. However, since these

manipulators are redundant, the position of the end-effector doesn't give adequate

information about the location of the links. This means that although the end-

effector's path can be planned so that it doesn't collide with any obstacles, there is

no guarantee that the links will not collide with some obstacle. A collision avoidance

scheme is desired that would ensure that the internal links of the manipulator don't

collide with each other or other obstacles in the workspace. Two criteria that are

necessary for the collision avoidance scheme are that its fast and that it operates in

the null-space of the end-effector. The firsl criteria is needed to ensure that the ob-

stacle avoidance scheme can be implemented on-line and can respond fast enough to

an obstacle entering the manipulator's workspace. The second criteria is necessary

so that the generated internal [ink mot.io_l doesn't affect the the end-effector and

cause it to deviate from its path. The collision avoidance scheme that is presented

in this thesis is based on the Puma-Platform inverse function. The redundant task

space or secondary task space parameterizes the internal link motion through the

configuration variables, dl, he and thela. This parameterization resolves the link

configurations into three disjoint se_s tha_ ,_re each controlled by one of the configu-

ration variables. Obstacles in the workspa,'e induce motion in one of these sets and

thus cause the appropriate configuration va riable to be altered. The basic algorithm

can be dissolved into a series of steps which will now be defined.

.',7
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OBSTACLE AVOIDANCE ALGORITHM: J

• STEP 1: The current joint angles are used to calculate the manipulator's

present redundant configuration. A coordinate system is defined by the cal-

culated configuration parameters and attached to the manipulator's links. A

set of distances dik are then calculated relative to this coordinate system. The

distance dik represents the distance from link i to obstacle k.

• STEP 2: Each link has a radially decaying force field surrounding it. The

intersection of an obstacle with this field determines the amount of force being

exerted by this obstacle on the link. This force is used to define the desired

increase in dik, 6di_:. The desired disl ance dik = dik + 6di_ is mapped into the

appropriate configuration variables.

• STEP 3: Once the new configuration variables are found, the Puma-Platform

inverse function is used to determine the corresponding joint angles. The ma-

nipulator's links are moved to this new configuration and the process repeats

itself.

This obstacle avoidance scheme is a process that relies solely on information

obtained at each time k. No past information or estimated future information is

used. At each time k, a snapshot of the manipulator and its workspace is taken.

Based on the information conta.ined in thi._ snapshot, the links are reconfigured to

avoid any obstacles. In the foUowing sections, the various components of the obstacle

avoidance algorithm will be discussed. A description of the modeling process will

be given. The generation of the closest point of contact between the models will

be covered. Also. the mathematically deft,ted force fields assigned to each link will

be discussed. Finally, a description of the. mapping from the distances dik to the

configuration variables will be given.
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Link and Obstacle model

,. X

7.1 Link and Obstacle modeling

Both the lit,ks and the obstacles are modeled with a simple convex structure.

This structure has lhe ['ortll of a cylinder wi,h varying radii where each end is capped

by a variable height cone. The data strut1 ure that defines this structure takes the

form of

w

u

f 1

where Pi represents the position of oue end of the cylinder, ri is the radius of

the cylinder at thai end. hi the height of tl,e cone attached at that end and li is the

distance from the center of the cylinder t,_ its end. A description of the different

forms this struct,tre can take is given in li,aure 7.1

7.2 Generating the closest point of coutact

The last three links and tl,e link offs,.l are all mapped into a plane that passes

through the posil ion vector P.,w and the primary elbow Pel. This plane rotates



6O
R

Figure 7.2:

,* "*'% ZI

• ' I_ "% | 4 ¥=

7 .,, ........... _ "% :_ '

,# .d
• " 7 .o

o" *. ,"

•" " hi o,a

Descrlpt[on of" rotation matrix /i_(n, gheta)

around the vector Pw as the primary ell_,w Pel is rotated by theta around Psw.

Figure 7.2 shows this plane' a.ml iudicalc,_ the rotational matrix, R(n, theta), that

describes to this plane. This matrix is dcs,ribed by:

R(n, theta) = n,.. n_ • 1." + n: . ,_

lT.r *: D: * V-- 17y * .._"

' = co.s(lheta)

.'_ = ._in(lheta)

I = L - co.s(th_ta)

P._tl"

_. *n_,V-n**S n.,n.,V+n_,S

n_, V + C nu, n. * V- n** S

2,.,*n.,V+n=,S n,,V+C

l/ w

IIP. ,L,II

The rotatioual matrix R(,. lheto) d_,,cribes the coordinate frame (X '_- Y'_-

Z") that, as described in figure 7.2. is atta,lked to the vertical plane. This coordinate

frame parameterizes the link motion inl_, vhe motion that occurs in the plane and

the motion that rotates rhe platle around P.,:w. Each obstacle's position is found

(72)
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Generation of model based closest point of contact

relative to this coordii_ate fram,' and dewv_nines the obstacle's influence on the two

parameterized li_k motiou_s. Figure 7.3 gives an example of an obstacle relative to

the coordinate frame attached lo the link.,. The links and obstacles are all modeled

with the previousl.v defitwd stvtwture. Referring to figure 7.3, it can be seen that

three pieces of i_formatiotl are extract,',l from each link and obstacle pair. This

information consists of three w','tors. P,. I'_i and Pn. These vectors are defined as

follows:

• Pc: The closes_ dist.allce l,etween th,' link and the obstacle.

• Phi: The w'ctor from the center of it_ass of the link, labeled cm, to the closest

point on the' obstacle, lab,'led c.

• Pn: The distance from the manipul_tor's shoulder Ps to the closest point on

the obstach,.

These three vectors. Pc. Phi and P,, are used by the obstacle avoidance algo-

rithm to generate' the configural ion varial_l,'s. The code that generates these vectors
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is kept separate from the main algorithm. This ensures program modularity and

allows the user to change the model description.

7.3 Generation of force fields

Each link has a mathematically defined decaying field assigned to it. The

point of intersection of the obstacle with a. link's field determines how much force

is being applied to the link. This force det,,rmines the change in distance, 6dik that

link i will undergo to ensure that the new distance of link i to obstacle k is equal to

dik = d,k + 6d,k. The change in distance is defined by:
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1

/CO = 1 +Hi,ld kl (7.3)

r,'o *
&lik = (7.4)

1 + Wi *

where Hi and b_¼ are link defined constants, Fi represents the maximum al-

lowed 6dik for link i and dlk and d_k represent two perpendicular components of the

vector from link i to obstacle k.
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7.4 Assignment of the Configuration variables

The redundant task space is subdivided into three separate subspaces, each

described by one of the configuration variables, dl, he or theta. Each one of the

configuration variables describes a distinct type of internal link motion. The config-

uration variable dl describes the motion corresponding to a fixed end-effector with

the platform translating along the linear rails. The variable he describes the motion

of links three, four and five in the vertical plane that passes through the position

vector Psw and the primary elbow Pel. as described in figure 7.2. Finally, the

variable theta describes the motion of the plane containing the last three links as
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Figure 7.4:

dl

Obstacle Avoidance: Definition of dl

that plane rotates arotmd tile position1 v,.,_or Psw. This is also described in figure

7.2. The assignm¢'xlt o[" each co,_figuratio,_ variable will now be described.

m

m

w

7.4.1 Assignment of dl

The configuration variabl_, dl deals with the translation of the platform's base.

Movemeat of the I>latforn_ is o_15" initi_t,'d when an obstacle comes into contact

with the force field sttrrounding links o_1,' ;-uad two, as described in figure 7.4. The

assignment of dli_. then becomes

where di_ vel)reseut._ the compone_lt o1 the vector from link i to obstacle k that's

parallel to ]-0 an,I dli_. rel_resel_ts the re.,,i,,>nse of links one and two to obstacle k.
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Obstacle Avoidance: Definition of he (Link 3)

7.4.2 Assignment of he

The configuration va/'iabh' he deals with the motion of the links in the per-

pendicular plane described in figure 7.2.._lotion is initiated through the variable he

whenever an obstacle comes into contact with the force field surrounding links three,

four or five. The nlagnilude of this naomi,>,, is determined by the distance from the

obstacles to the links relative to the coo,',li,late frame, (X '_ - Y'_ - Z'_). Each of the

links generates a value for he based on the offect of the obstacle on that link. These

values for he are later resohed into one value in the conflict resolution algorithm.

7.4.2.1 Link i = 3

Referring to figure 7..5. he,_. is deft,w,[ by:

di_. = di_. + (Sdi,,.

la = _/P,,] + P,,"

q3a = ta _,( Pn_.

(7.6)

(7.7)

(7.8)
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Figure 7.6: Obstacle Avoidance: Definition of he (Link 4)

q3 = q3a + sg,_(d;_ ) . tan-l( dik ) (7.9)

p_ -.-

.sin(q3)

0

c,.-, ( q3 )

(7.10)

.rl = (7.11)

./(e • .as • .,._1:- (xl_ + A5_- ,-1_)_
he_t. (7.12)

• = V 4 * zl 2

where he3t. rept'ese, ts the reaction of link 3 to obstacle k.

7.4.2.2 Link i = 4

Referring to figure 7.6. the value or h, calculated for this link is based on which

end of the link the ohstacie is closer to. Tl,is is represented through the calculation

of ra and rb, which are defined by:

,., = _/P,,i_+ _e,i,: + 0.3• As)_ (7.13)
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rb - k/Pniiy2 + (0.5, A5- Phil) 2

If ra is less than rb then he4k is calculated by:

(7.14) m
i

=

raik =

la --

q3a =

cos(qa) =

qa =

q3 =

Re --

xl =

he4k =

ra + 5dik

_/Pn_ 2 4- Phi-'

ta,_-'(Pnl )
PW.

ia" + D42 - ra_:

2*la* D4

ta,,.-:(J: --C°_(qa)
,.:..(-_:)

q3a + sgn(q3], - q3a) * qa

Mn(q3)

0

cos(q3)

llP_w'-P_ll

_/(2, A5*.rl) 2 - (712 + A52 - r12) 24 * xl 2

otherwise h e:4k is calculated by:

(7.ts)

(7.:6)

(7.17)

(7.is)

(7.19)

(7.20)

(7.2:)

(7.22)

(7.23)
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rbik = rb + 6dik

Lb = P,ti- Psw'

tb = IILbll

:, - L b_.
qnb = tan- (_ )

. "

lb" + rl 2 - H)_k

cos(qb) = 2 * Ib * vt

qb = t_,_-:(_/::i°_qb),)
co.,(qb)

q3 = q31,+ sgn(q, i,- qnb) * qb

(7.24)

(7.25)

(7.26)

(7.27)

(7.28)

(7.29)
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Figure 7.7: Obstacle Avoidance: Definition of he (Link 5)

i

n

u

= .

i

P6

._it_(q3)

0

co._(q3)

/'_"" - P' II

,/(2 * +45 * .rl)2 _ (zl 2 + A52 _ r12)2

V 4,xl +

where he4&. represents the response, of link 4 obstacle k.

7.4.2.3 Link 5

Referring t(, figure 7.7. h¢_ is clefil,e,I by:

(7.31)

Ih =

qoh =

d,_ + _dik

p,i) _ P,w'

II/-_,11

tc._-'(-Lh( I )
Lb(3)

(7.34)

(7.3s)

(7.36)

(7.37)

i



68 u

ZO Z,a

YO ."''. 7.a" I,

"°..." \ ',

p_,..f a"
o.°_.°°*'

XO

P.

Figure 7.8: Obstacle Avoidance: Definition of theta (Links 3-5)

qn = qnb + sgn(d,_

p# ..-

_in(q3)

0

c_J.s(q3 )

P.,u" - II

(2*A5*,r ):-(xl:+AS=-rl:)=4 * xl 2

where he_. represents the respons," o1"link 5 to obstacle k.

(7.38)

(7.39)

7.4.3 Assignment of th_t_,

The configuration variable theta d,,al- with the rotation of the plane containing

links three, four and five. arom,d the ve,'lor from the shoulder to the wrist of the

manipulator. Each obstacle iu 1he work.-pace affects each llnk differently and thus

has a different effect on the plane containing the links. The effect of the obstacles

on the plane is sl_own in figure 7.8 and is described by:
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dik = dik. + 6dik (7.42)

la = CPni2 + p,,i.,. (7.43)

q3a = tan-l(_) (7.44)
l"n.

Py = la , sin(q3o -qp) (7.45)

r = V/1.Pnig]2 + Py_ (7.46)

dik ) (7.47)

7.'i

IP,_,.I (7.48)b_t = ta,_-'(T)

tl, eta,k = tl, e_ao_ + sfz,(Pni(1,i) * (all - bet) (7.49)

where theta,k, rotates the perpendiotlar plane the desired distance dik away

from the obstacles.

7'.5 Resolving obstacle conflicts

The group of configuration variables (dlik, heik, thetaik) indicate the individ-

ual responses of each link to each obstacle. This group is resolved into one set of

configuration variables (dl. he, theta) by a conflict resolution algorithm. This al-

gorithm utilizes a simplistic approach by choosing from the group of configuration

variables the ones that move the links the furthest away from the obstacles. If two

opposing values are generated for one coKtfiguration value, the midpoint between

these values is chosen as the magnitude of the configuration variable. Once the

configuration variables are obtained, the fi ual step of the algorithm is implemented

and the corresponding joint vector is generated.

In summary, the obstacle avoidance scheme relies only on the information

obtained at each time k. This information, which consists of the link and obstacle

locations, is used to generate the new cow,figuration for the links to be placed in.
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The resultant link motion is generated it, the null-space of the end-effector and

serves to maximize the distance between the links and the obstacles. This obstacle

avoidance algorithm, as is the case for the joint limit avoidance algorithm, is not a

generic algorithm. It can't be easily applied to other manipulators. However, this

specialization lends it speed and efficiency. The results from testing and simulating

the obstacle avoidance and joint limit avoid&nce algorithms and the inverse functions

will now be presented.
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CHAPTER 8

TEST AND SIMULATION RESULTS

m

= =

m

n

The results produced by this thesis can be divided into two categories, the test results

for the inverse functions and the simulat, io_t results for the joint limit avoidance and

obstacle avoidance routines.

The inverse functions, the Puma-Posil:ioner and the Puma-Platform, were both

implemented in C. Since these inverse functions generated one-to-one mappings

between the joint space and augmented task space of the CIRSSE manipulator, the

following testing procedure was used.

TESTING PROCEDURE:

• The manipulator's joint space was sampled and an appropriate joint vector

was selected.

m

u

• The attgmented task vector was calculated as a function of this joint vector.

The attgmented task vector is comprised of the Cartesian task vector and the

redundant task vector.

w

Q

w

r-

w

= =

• The joint vector was used to calculate the manipulator's pose. This pose and

the augmented task vector was thetl used by the inverse function to generate

the corresponding joint vector.

• This calculated joint vector was compared With the sampled joint vector

through the use of a suitable toleran,'e.

Table 8.1 summarizes th(" results oF running this testing procedure on the

two inverse functions. The joint range category of the table indicates whether the

entire joint range was sampled or a specific range around a singularity was sampled.

It should be noted that at'ound the singular regions the tolerance level had to be

71
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Inverse functions Joint " Range Iterations Errors Tolerance(deg)
all '3.2x1@ _ 4100Puma-Positioner

Puma-Positioner q3

i Puma-Pomtmner q6

Puma-Positioner

Puma-Platform

Puma-Platform

q8

all
1,

q3

Puma-Platform qs -"

Puma-Platform qs

105.

105

105

3.2x10 s'

10s
105

105

120

120 .... 0.5

i20 - 0.5
4000

100

I00

0.005

0.5

0.5

100 0.5

Table 8.1: Test results for the inverse functions

increased. This was clone because the singular points of the inverse functions tend

to exhibit numerical instabilities.

Simulations of the joint limit avoidaz,ce and obstacle avoidance routines were

generated for the CIRSSE manipulator through the use of SILMA Cimstation pack-

age. The joint limit avoidance routine was implemented in C. The simulations of the

joint limit avoidance routine are displayed in figures 8.1-8.4. Figures 8.1-8.2 display

the different possible configurations for a fixed task vector with the PUMA's elbow

up. Figures 8.3-_.4 display a different s#,l of link configurations for the same task

vector with the PUMA's elbow down. From these figures it should be clear that

there exists many different configurations t'or a fixed task. The joint limit avoidance

scheme selects those that generate reachable joint vectors and then allows the user

to choose a link configura.tion from this set. The obstacle avoidance scheme was

implemented in matlab code. Figures 85,-_.8 display a sample run of two manipu-

lators performing two tasks simultaneoush. These figures describe the case where

the right manipulator is running the obs1,,:le avoidance routine while performing a

task. The left manipulator is also performi)tg a task that takes it into the workspace

of the right, manil_ulator The obstacle avc,idance routine on the right manipulator

causes the right manipulator's links to mow away from the left manipulator without

deviating from its task. This simulation di,_plays the power of the obstacle avoidance
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m

Figure 8.1: Joint-Limit-Avoidance: Wrist BELOW Secondary elbow

routine. It allows the two manipulators 1(7 perform tasks that takes them into each

others workspace with their links being able to reconfigure themselves to avoid each

other.

w

m
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Figure 8.2: Joint-Limit-Avoidance: Wrist BELOW Secondary elbow
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Figure 8.3: Joint-Limit-Avoidance: Wrist ABOVE Secondary elbow i
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L

u

Figure 8.4: Joint-Limit-Avoidance: Wrist ABOVE Secondary elbow

w

Figure 8.5: Obstacle-Avoidance: Manipulators at time t = 0.0
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Figure 8.6: Obstacle-Avoidance: Manipulators at time t = 1.0
l

n

mm

[]

I

m

mm

m

Figure 8.7: Obstacle-Avoidance: Manipulators at time t -- 2.0 []
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Figure 8.8: Obstacle-Avoidance: Manipulators at time t -- 3.0
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Figure 8.9: Obstacle-Avoidance: Manipulators at time t -- 4.0
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CHAPTER 9

CONCLUSION

This thesis has resolved the redundancy r_,solution problem of the CIRSSE redun-

dant manipulator through the developm,'nt of two inverse functions. These inverse

functions, the Puma-Positioner and the Puma-Platform, each augmented the Carte-

sian space with a redundant task space which served to provide the necessary extra

dofs to the task space. The redundant task space or secondary task space of each in-

verse function was designed with a specific' task in mind. The secondary task space

of the Puma-Positioner allowed the user to position the base of the PUMA. The

secondary task space of the Puma-Platfornt enabled the user to place and configure

the end-effector and the links. These ilLverse functions were then applied to the

areas of joint limit and obstacle avoidance. The Puma-Posltioner was incorporated

into a joint limit avoidance scheme by defining its secondary task vector based on

link and joint constraints. The Puma-Platt'orm's secondary task vector was defined

by the location of obstacles in the manip_tla.tor's workspace. These obstacles caused

the links to reconfigure themselves withou_ affecting the end-effector's motion.

9.1 Future Work

The inverse functions in this thesis were developed specifically for use in the

joint limit and obstacle avoidance routines. Other avenues of research include devel-

oping inverse functions that deal with manipulator singularities and manipulability.

Also, these inverse functions only provi, l,' a kinematic structure for the manipu-

lators. In order to effectively cout_:ol t he, e manipulators, a dynamic approach to

redundant manipulators nmst be develope, I. Such an approach could be developed

by combining control theory and redundancy resolution methods.
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APPENDIX A

Symbol Definitions

!

• a ® b: The cross product of the vectors a and b.

• a ® b: The dot product of the vectot's a and b.

• a • _: The scalar multiplication of the scalars a and/3.

w
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APPENDIX B

Modified Denavlt-Hartenberg Representation

The homogeneous transformation relating the ith frame to the (i- 1) th frame, as

given in Craig[16], is described by

• i-1 =

CO, -.S'Oi 0 ai-1

SO,Co i_1 COi('c_i_, -Sai_, -diSai_x

.30/5'oi_1 C0;.%__, Cai_, diCai_,

0 0 0 1

(B.1)
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where (ai, o,, di,Oi) are defined as:

• ai: the distance from Zi to Zi+l measured along Xi

• ai: the angle between Zi to Zi+l measured about Xi

• di: the distance fl'om Xi-_ to Xi measured along Zi

• Oi" the angle between Xi-t to Xi me_,sured about Zi
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APPENDIX C

The Jacobian of the CIRSSE manipulator

The Jacobian is represented by

w

0 z_ z_ z!,' z_ z° z? z_ ]z o z? × po z o× po z o <po zo × poo z o × po zo × po z_ × po2,e 3,* 4,e 6,e 7,* 8,e

In order to evaluate the manipulator's singularities, the Jacobian of frame

] 6seven relative to frame six.. r, as described by Fijany and Bejczy[17], was calculated

and is described by:

(c._)

!

0 j12 $4C5_ -.5's6 0 0 0 -$7

0 j22 - $4S56 -(_6 0 0 - 1 0

0 $3S4 C4 0 1 1 0 Cr

j4t j42 j43 -d.C56 dr + asS6 dr 0 0

jsl j*2 j53 'l.._S6 a6 + asC6 as 0 0

jsl C_.4_ + $3.4t S4At .t2 0 0 0 0

j12 = - S:3C4C56 - C3S_,

j2_ = S.3('4S._6 - C3Css

j41 = $2 ( C.3C4 C._6 - ,,%$56) + C,.5', Cs6

jsl = -52( C:3C4S_ + S:_C_6) + ("2.'_'4S56

j,_ = S3.-','4A.3+ d6j,..2

js2 = -S_S4.44 - dsjr2

343 = C_.-i._ - dsS4S_6

CT&

-cs

0

0

0

(C.2)
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I

j53 -- -C4A4 - d6S4C56

A1 = d4 - a555 - a6S56 + d_C.s8

A2 = asC5 + a6C56 + d_$56

Az = d4C58 + a55_ + d_

A4 = d43.58 - as C_ - a_

m
m

I

B

m

m

m

i

I

i
m

m

[]

m

B

l

m

mm

i



APPENDIX D

The Augmented Jacobian of the CIRSSE manipulator

The augmented Jacobian .1_ is defined Iw:

i

j_
J_ = (D.1)

dg/dq

where dg/dq is a (3 x n) matrix that represents the redundant task space

velocities. The kinematic functions of the Puma-Positioner are identity functions.

The redundant task space velocities are .]_tst the velocities of joints one, two and

three and are described by:

= , .

41 = (il (D.2)

42 = (/2 (D.3)

(/_ = 43 (D.4)

The kinematic functions of the Puma-Platform are dl,he and theta.

velocities, d'l, hle and th'ela, are described t,y:

Their

m

m

m

u

dl =

2,1 --

h'_ --

theta =

p2ey =

p2e: =

q'l (D.5)

2as(drS 8._ + _ + d_+ + _c_)

((a_. + _ - a-",)" - z_)46 (D.6)

2.rl

p2e_,l * p2"ez - p2ez * p2"ey (D.7)
(p2ey) _ + Ip2ez) 2

-c_ * .sz * pe,r - sz * s_ * pey + c2 * pez

•st * pe,r - c_ k l)ey

m

_:_
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CI --
_/pa" 2 + py_

PY

x/pa: "2+ l:nj"_
C 2

pr
_ = V,px2 + py_ + lJ'.._
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